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Abstract

The recently proposed triangular differential quadrature method (TDQM) is further elaborated in the paper. Explicit
formulae to calculate the weighting coefficients for uniform grid are developed. The TDQM is applied to the elastostatic
analysis of Reissner plates. In comparison with other available numerical results, good accuracy and rapid convergence
are achieved, indicating that the TDQM has attractive potential as a novel numerical technique. © 2001 Elsevier Science
Ltd. All rights reserved.
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1. Introduction

Many physical and engineering problems are described by various differential equations which can be
solved using various numerical methods, such as the finite element method (FEM), finite difference method
(FDM) and the boundary element method (BEM), etc. These numerical methods have been shown to be the
most powerful numerical tools and able to deal with various practical problems. There have been many
commercial computer codes available. However, these methods are not always the most efficient since a
large number of degrees of freedoms are often required even to gain a moderate accuracy and systematic
knowledge background is needed for an analyst. As an alternative numerical approach to solve differential
equations, the differential quadrature method (DQM) has been studied for years since it was first intro-
duced by Bellman and Casti (1971). It has been shown by many researchers that the DQM is an attractive
numerical method with high efficiency and accuracy. The conventional DQM is mostly effective for one-
dimensional problems and multi-dimensional problems with geometrically regular domain. To deal with
problems on irregular geometric domains, transformation has to be conducted to map a non-rectangular
physical domain into a normalized computational domain (Lam, 1993; Bert and Malik, 1996). As a result, a
simple governing equation is often transformed into a lengthy and complicated one especially for high
order differential equations. In addition, as pointed out by Zhong (1998), singularity arises in differential
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quadrature analysis for problems on a triangular domain. In the implementation of DQM on a triangular
domain, one edge of the mesh has to degenerate into a single point, resulting in over-dense grid near the
point and therefore the unnecessary high computational cost.

Most recently, a triangular differential quadrature method (TDQM) was proposed by Zhong (2000),
which is able to overcome the above difficulty in the analysis of problems on triangular domains. The
consequent avoidance of transformation and mathematical convenience make it become a promising new
numerical tool to deal with multidimensional problems. More significant is its potential to be imbued with
great feasibility of triangles in domain decomposition technique. In addition, the generalization of the
present philosophy will derive a series of useful new techniques in three-dimensional analysis.

In this paper, the TDQM is discussed in detail. Explicit formulae to calculate the weighting coefficients
are provided based on generalized Lagrangian interpolation on triangular domain. To further demonstrate
the TDQM, elastostatic analysis of Reissner plates is conducted. In comparison with other numerical
method, rapid convergence and good to excellent agreement are achieved with rather less grid points. It is
concluded that the TDQM is a very promising numerical tool.

2. Triangular differential quadrature method

As proposed by Zhong (2000), the triangular domain is first discretized into a uniform grid system. In the
system, a vertex identifies the opposite edge and the normal to the edge identifies the corresponding di-
rection, i.e., vertex 1 opposite edge 1 and direction 1 normal to edge 1. Parallel lines are drawn which divide
the distance between vertex 1 and edge 1 into m equal segments in direction 1. Each line is identified with a
digit from 0 to m, the line 0 being coincident with edge 1 and line m passing through vertex 1. A typical line
is denoted by p in direction 1. Same procedures are repeated in the other two directions, respectively. The
typical lines in direction 2 (normal to edge 2) and direction 3 (normal to edge 3) are designated as ¢ and r,
respectively. Apparently, a typical point in the mesh is identified by three digits p, ¢, r, consistent with the
designation of typical lines in the three directions. The area coordinates for the typical point are p/m, q/m,
r/m. It is noted that

ptqg+r=m, 0<p,q,r<m. (1)
Altogether, there are

M=m+1)(m+2)/2 (2)
grid points generated in the entire triangular domain. A pictorial description of the grid system is given in
Fig. 1.

As suggested by Zhong (2000), in the TDQM, a partial derivative of a function with respect to a space
variable at a grid point is approximated by the weighted linear summation of function values at all grid
points in the entire triangular domain. Hence,

m m—j

: _ (n)
Dn{f (x7y)}o¢ﬂy - chz};iy,pqr pqrs (3)
=0 i=0

where D, is a differential operator of order n; subscripts (o, ,7) stands for the value of the derivative at grid
point («, f,7); Ci’;%,ﬁpqr are the weighting coefficients related to the function values f,, at points (p, q,r). The
summation indices (p, ¢,r) in the above equation take the following values in the two summation loops:
(p,q,r):(m—i—j,i,j). (4)
Introducing the triangular differential quadrature into the differential equation of a problem, a set
of simultanecous algebraic equations with the function values at all grid points as unknown variables is
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Fig. 1. Grid system in an arbitrary triangular domain.

established. Analogous to the DQM, the governing differential equation is expressed in terms of triangular
differential quadrature format at interior grid points of the domain. Meanwhile, the boundary conditions at
the edge grid points must be invoked.

One issue, which may be worth addressing, is the terminology of the method. In the paper, the term
quadrature is inherited despite the actual two-dimensional summation of function values in the present
method. On the other hand, a natural extension of the present philosophy in three-dimensional analysis is
the introduction of volume coordinates in a triangular pyramid, i.e.

m m—jm—j—i

DS, »,2) } s = ZZ Z thc)[’)%'(i‘pqm pars> (5)

=0 i=0 k=0
where the summation indices (p, g, 7,s) assume the following values in the three summation loops:
(pyq,r,s)=(m—k—i—jk,ij). (6)

The author is inclined to name it as tetrahedral (or pyramidal) quadrature. If a term cubature was given to
the present method, one would coin a new term, say, quartiture for the method in a tetrahedron. The need
for new terms might also arise, for instance, when the present method is combined with the conventional
DQM in a prism with triangular cross-section. In this case, pentahedral quadrature is eligible following the
present nomenclature.

3. Determination and properties of weighting coefficients

One approach to determine the weighting coefficients, as pointed out by Zhong (2000), is to require that
Eq. (3) be exact when f takes the following M base functions:
f =1Ly, 0<p,q,r<m, (7)

where the expressions of the three area coordinates of an arbitrary point (x,y) inside a triangular domain
can be given as
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L= 2A(atl—&—bx—i—c,y) i=1,2,3. (8)
A is the area of the triangle which is expressed in terms of the Cartesian coordinates of the three vertices
as
I x1 n
24 =11 X2 W, (9)
1 X3 y3

and the coefficients in Eq. (8) are the values of the determinants of the corresponding cofactor matrices, e.g.
ayp = X2)3 — X3)2, by =y, —ys, cr = —(x — x3). (10)

The remaining coefficients can be obtained by interchanging subscripts 1, 2, 3. It is noteworthy that the three
vertices should be numbered in an anti-clockwise sequence in order to ensure positive value from Eq. (9).

With the chain rule of differentiation, a set of algebraic equations can be established after substituting
Eq. (7) for fin Eq. (3). The weighting coefficients can then be determined by solving the resulting simul-
taneous equations.

Since M grid points are generated in the triangular domain and each grid point has M coefficients, at first
sight, there appear M x M coeflicients to be determined for a given derivative. In fact, the Weighting co-
eﬂic1ents have same 1nterchangeable property as the coefficients in Eq. (8). Suppose that cY is known,

“By.par
C/m o Cf;‘}; g Cix}; g Cﬂw}qp, and C} gy CaN be obtained by interchanging subscripts 1, 2, 3 associated

with by, b,, b3 in Cxﬁ pqr- FOT instance, in the cubic triangular differential quadrature approximation (m = 3)

C8) s = (by — 2by — 2b3)/(64) = by /(24). (11a)

With the above interchanging rule of the triple-subscripts of the weighting coefficients, one can get the
following weighting coefficients:

Cih oz = (bs — 2by — 2b,)/(64) = by/(24), (11b)
Cl) oz = (by — 2by — 2b,)/(64) = b3 /(24), (11c)
Cionao0 = (b1 — 2b3 — 2b,) /(64) = by /(24), (11d)
Clonosn = (b2 — 2by — 2b3)/(64) = b,/ (24), (1le)
Cih oz = (by — 2by — 2b1)/(64) = b3/ (24). (11f)

Thus, the actual minimum number of weighting coefficients to be determined is m(m + 1) rather than
M x M.

Following the definition of the triangular differential quadrature, it is immediately clear that the
weighting coefficients of a higher order derivative can be obtained by means of the self-multiplication of
weighting coefficients of first-order derivatives, for instance,

m m—j
(x) x
oc/f,pqr - § :E :szf stu vtupqr’ (123)
j=0 i=0
m m—j

a,lf pqi chz,li, stu vtupqr7 (12b)

j=0 i=0
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m m—j

d);f)i‘(;qr Z Z Cocﬁ, \Stu s;::)qr ( 1 ZC)

Jj=0 i=0

It follows that the above relations can be written collectively in matrix form as

] = [cW][c¥), (13a)
(] = [C][CV], (13b)
[Ct=] = [C¥][C) (13¢)

It can be seen that having the weighting coefficient matrices [C™)] and [C")] for first-order derivatives, the
weighting coefﬁcients of any higher-order weighting coefficients can be obtained by successive multiplica-
tions of [C¥] and [CY)].

Analogous to the DQM, it is much more convenient if explicit expression of the weighting coefficients is
available. On examination of the grid system, it is easy to find that the generalized Lagrangian interpolation
which is commonly used in finite element formulation of shape functions for triangular elements (Galla-
gher, 1975; Huebner and Thornton, 1982) can be used to form the base functions. Therefore, an alternative
approach to determine the weighting coefficients is to require that Eq. (3) be exact when f takes the fol-
lowing M base functions:

_qur = 4?p(L1)7q(L2).7r(L3)7 0 <p7Q7r < m, (14)

where the auxiliary function is given as

_ mLy—k+1 ; 1 < < m;
Ty =4 L5 sr (15)
1, p=0
Similar expressions for ]_”q (L,) and f,(Ls) can be defined. It is easy to show that the function in Eq. (14)

has the following nature:

Frby =550 T o)y L), = OO

Li=o/m

1, (O(»ﬁa'))):(paqu);
= . < <
{0, otherwise. o Ospgrsm, (16)

where 0 is the Kroneckor operator. Take the first derivative of the base function in Eq. (14), one finds

Of pgr
Ox

m  m—

chaﬁy Aluqur stu chrxﬂ, stuép‘ 5qf5”’ - Cxﬁ pqr” (17)

afty J=0 i=0 Jj=0 i=0

Hence, an explicit expression for the weighting coefficients C&) . 1s given as follows:

fpgr A7 7

(x) 0 2 2 1E‘fTMi b b b dpjif

x _reL oL L fpar _ 3 - dfy 7

Copr = 5 2 2 =[3% % %] foafr (- (18)
fpyr - - dF,
Ly 7/ 4y S pf E By

A similar expression for CY  can be established, i.e.

aBy.par
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aqur df r
oL, dLlf f
0 _ | 3 3s | ) Y _ [ o al) 5 d,7
afypgr — | oy oy oy oL = [24 24 24] f van/ . (19)
O pgr - 7 df,
oLy 7 apy S ol g it oy

From Eq. (15), the first order derivative of fp(Ll) with respect to L; is obtained as

» =
my Lo 2<p<a,
k=1
s p
47, _ ]2 Ja—k+1), 0<a<p—1, (20)
dLl k=1
Ly=o/m kot
m7 = 1)
0, =
Similar expressions for the derivatives of f,(L,) and f,(Ls) with respect to L, and L3 can be derived
q 7
Zj 2<gq<p,
dr 71
Yy = qﬂH(ﬁ k+1), 0<p<qg—1, (21)
dL2 k=1
Ly=/m s
m, q=1,
0, q = 0,
my Lol 2<r<y,
df, _ ),H(y—k+l) 0<y<r—1, (22)
L3 |y font
m, r=1,
0, r=0.

The weighting coefficients for high order derivatives can still be determined by the recurrence relationships
provided in Egs. (12) and (13).
4. Formulation of Reissner plates

The governing equations for a homogeneous and isotropic Reissner plate, in terms of the three dis-
placement components are given as follows:

o2 —y 0 X v O w —
D(;xwﬁl Py 4 1 argy)+GKh(g_x_l//x)_o,
(aa}‘f?_,_l va%_l_lﬂf*%)_,_GKh(m_%) -0, (23)

x0y ay

th(azw —2—%—%) +q=0,

where w is the deflection, ¥, and v, are the rotations of the normal against the two coordinate axes; ¢ is the
transverse loading intensity applied on the upper surface of the plate; G, &, k are the shear modulus, plate
thickness and shear correction factor which is often taken as 5/6. D is the flexural rigidity which is given as
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_ER
C12(1 —?2)’
where E, v are Young’s modulus and Poisson’s ratio, respectively.

Introducing the triangular differential quadrature, Eq. (23) will be recast into a set of algebraic equations
at any grid point (o, ,7), i.

5 XX) v O v () K i —
{( abrpgr T +i5 Cot/f/pqr) (W, )pqr +]%C1/§}‘mpqr(w ) +9 hcdlfypqr } B %(wx)fx/ﬂ' =0,

“Miﬂms
M3 I3

)‘ 1 y XX 14y ) Gl\h ) Grh _
K wBypar T Cocﬁ )pqr) (l//y)pqr + % Caﬁ%pqr(wx)pqr Caﬁ» pqr I"IY} D (‘//J’)xﬁv =0, (25)

Kh

off
I M§

m—j
(xx oy (x) ) 4 _
£ 0;} |:<C,¢[f .pqr Cot/i, pqr) Wpgr — Ca/f'ynpqr(lpx)pqr Cot/i, pqr (lpy)pqri| + D~ 0.

The bending moments, twisting moments and shear forces and their triangular differential quadrature
formats are expressed as

g =-D( By ) = D,Z?%( o)) (26)

01 =-0(Fe+0%2) “D,ig( D ) 7)) @)

)y =5 D) - S (e + 1)) 9
afy =0 =0

02, = ooh(G-w.) —GhZZ( i) — GRA( ) 29)

(01 = Gt 51 - ¢y>aﬁf6’ch,i@§< ) i) — Gh(1,), 5, (30)

Two typical boundary conditions are
(a) Simply supported edge (S)

w=0, M, =M,cos’0+2M,cos0sin0 + M,sin*0 = 0,

: (31)
lﬁs = —(sm@)xpx + (COSQ)% = 0>
(b) Fully-clamped edge (C)
w=0, lpx =0, l,by =0, (32)

where 6 is the angle from the x-axis to the outward normal at an edge point.

To conduct triangular differential quadrature analysis of the problem, the differential equations are
implemented at the (m —2)(m — 1)/2 interior grid points, i.e., 1 <o, f, y<m —2; in the meantime,
boundary conditions are imposed at the 3m grids on the three edges of the triangle. Altogether, there are
3M equations with 3M unknowns to be solved.



2828 H. Zhong | International Journal of Solids and Structures 38 (2001) 2821-2832

5. Results and discussion

The above triangular differential quadrature procedures are first employed to study an equilateral tri-
angular Reissner plate subjected to uniformly distributed load under different boundary conditions. The
plate under SCC boundary conditions is shown in Fig. 2. The problems chosen are aimed to demonstrate
the accuracy and convergence speed of the triangular differential quadrature method. In all calculations,
Poisson’s ratio v is taken as 0.3. In the case when there is no grid pertaining to the centroid, the generalized
Lagrangian interpolation in Eq. (14) is adopted to compute the desired displacement components. For
example, the deflection at the centroid can be given as

m_m—j

W|L1:L2:L3:1/3 ZEJ 1/3 (Lz)

J=0 i=0

L= ]/3f (L3)|L3:l/3wpqra 0<P7q7”<m- (33)

Meanwhile, the derivatives at the centroid which are needed in the expressions of internal forces can be
worked out as well based on Eq. (14), such as

dfp
alp m m—j dLlff
o =2 > Wl 5 B\ 7,97 - (34)
Ly=Ly=L3=1/3 j=0 i=0

a7,
fﬂf‘l Li=L,=L3=1/3

Actually, the displacement components and their derivatives at any point of the triangle can be obtained
with reference to the above two equations. The computed deflection and bending moments at the centroid
for plates with three different boundary conditions SSS, CCC and SCC are listed in Tables 1-3. In these
tables, the following non-dimensional quantities are introduced to represent the deflection and two bending
moments at the centroid of the equilateral triangular plate:

(35)

1(x1,yp) (m00)

Fig. 2. Grid of equilateral triangular plate under SCC boundary condition.
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Table 1
Convergence of TDQ analysis of an equilateral triangle plate under SSS
h/a m M W M, M,
0.001 3 10 0.8667 x 1073 0 0
4 15 0.6066 x 10~ 1.3205 x 10~ 1.3205 x 10~
5 21 0.6319 1.8056 1.8056
6 28 0.6319 1.8056 1.8056
Exact 0.6319 1.8056 1.8056
0.01 5 21 0.6328 1.8056 1.8056
6 28 0.6328 1.8056 1.8056
FEM* 0.6327 1.801 1.808
Exact 0.6328 1.8056 1.8056
0.1 5 21 0.7186 1.8056 1.8056
6 28 0.7186 1.8056 1.8056
Exact 0.7186 1.8056 1.8056
FEM®* 0.7186 1.808 1.808
0.2 5 21 0.9786 1.8056 1.8056
6 28 0.9786 1.8056 1.8056
Exact 0.9786 1.8056 1.8056
FEM* 0.9786 1.808 1.808
#Liu and Liew (1998).
Table 2
Convergence of TDQ analysis of an equilateral triangle plate under CCC
hla m M w M, M,
0.01 6 28 0.2012 0.8594 0.8594
7 36 0.1977 0.8481 0.8481
11 78 0.1844 0.8190 0.8188
12 91 0.1841 0.8180 0.8176
13 105 0.1840 0.8178 0.8178
14 120 0.1842 0.8182 0.8182
15 136 0.1840 0.8178 0.8178
16 153 0.1841 0.8181 0.8181
0.1 7 36 0.2779 0.8389 0.8389
8 45 0.2785 0.8390 0.8390
9 55 0.2784 0.8401 0.8401
10 66 0.2786 0.8403 0.8403
11 78 0.2785 0.8400 0.8400
12 91 0.2786 0.8405 0.8405
13 105 0.2786 0.8403 0.8403
FEM* 0.2787 0.8432 0.8428
0.25 7 36 0.7469 0.8729 0.8729
8 45 0.7470 0.8752 0.8752
9 55 0.7470 0.8746 0.8746
10 66 0.7470 0.8754 0.8754
11 78 0.7471 0.8751 0.8751
FEM? 0.7471 0.8779 0.8775

#Liu and Liew (1998).
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Table 3
Convergence of TDQ analysis of an equilateral triangle plate under SCC
h/a m M W M, M,
7 36 0.2567 0.8673 1.0955
0.01 11 78 0.2587 0.9057 1.0723
12 91 0.2584 0.9052 1.0635
13 105 0.2584 0.9054 1.0629
14 120 0.2585 0.9052 1.0637
15 136 0.2584 0.9055 1.0630
0.1 6 28 0.3677 1.0030 1.0866
7 36 0.3625 0.9873 1.0596
8 45 0.3620 0.9870 1.0600
9 55 0.3625 0.9883 1.0614
10 66 0.3624 0.9883 1.0619
11 78 0.3622 0.9879 1.0612
12 91 0.3625 0.9885 1.0622
13 105 0.3623 0.9881 1.0614
FEM* 0.3624 0.990 1.065
0.25 5 21 0.8792 1.2051 1.0436
6 28 0.8649 1.2169 1.0564
7 36 0.8694 1.2179 1.0558
8 45 0.8676 1.2167 1.0563
9 55 0.8683 1.2172 1.0574
10 66 0.8680 1.2180 1.0572
11 78 0.8682 1.2174 1.0575
12 91 0.8681 1.2178 1.0574
13 105 0.8682 1.2176 1.0576
14 120 0.8681 1.2177 1.0575
FEM* 0.8682 1.220 1.060

#Liu and Liew (1998).

where a is the edge length of the equilateral triangle. All FEM solutions are cited from the results of Liu and
Liew (1998) using ANSYS computer code with 2116 grid points.

The results for some low order usable grids are listed with the objective to display the convergence
threshold. It can be seen that the triangular differential quadrature analysis for equilateral triangular plates
under the three different boundary conditions start to converge from m = 5 or m = 6 with total grid points
M = 21 or M = 28. For equilateral triangular plates with SSS boundary conditions, a noteworthy feature is
that the results attained from TDQ analysis with 21 grid points (m = 5) are in excellent agreement with
available solutions from other sources regardless of the thickness-to-edge—length ratio. An acceptable in-
terpretation comes from the fact that the exact solution of the deflection for thin plates is given in terms of a
quintic polynomial (Timoshenko and Woinowsky-Krieger, 1970). The exact solution of moderately thick
triangular plates with all three edges simply-supported is also a quintic polynomial (Hu, 1981), i.e.

®) n? ( w2 >

(R)
(i —v) \ o T o

=W

(36)

where the superscripts R and K represent the solutions for Reissner plate and Kirchhoff plate, respectively.
In contrast, as reported by Liu and Liew (1998), 2116 grid points were used in the finite element code
ANSYS analysis to achieve comparable accuracy. For equilateral triangular plates with CCC and SCC
boundary conditions, the triangular differential analysis still exhibits good convergent behavior. Three
effective decimal digits are stabilized when the number of total grid points is increased to 91 for very thin
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plate, still being in sharp contrast to the 2116 grid points of finite element analysis. With the increase of
plate thickness, it is found that the results converge more rapidly. For thick plate 4/a = 0.25, the three
digits of results are unaltered with mere 36 grid points.

To further demonstrate the applicability of the TDQM, an isosceles right triangular plate under uniform
distributed load is also studied (Fig. 3). The exact solution for thin plate is given in terms of double
trigonometric series (Timoshenko and Woinowsky-Krieger, 1970)

16ga* | & =\ nmsinmnx/asinany/a = =\ msinmnx/asinnny/a
(K) —
W= 2 D IEDY SN

2 2
135, naas,. mn* —m?)(m* +n?)" 5% 5% n(m? —n?)(m? + n?)

The computed deflection and two bending moments at the centroid are listed in Table 4. Although the
convergence of the bending moments for thin plates is not as satisfactory as that of the deflection, the results

(0,0)

Fig. 3. Simply supported isosceles right triangular plate.

Table 4
Results of isosceles right triangle with three edges simply supported
h/a m W M, M,
0.01 15 0.7015 2.0086 1.7519
17 0.7020 1.7297 2.0330
19 0.7022 1.9758 1.7878
21 0.7024 1.7728 1.9914
Exact 0.7016K2 1.8826 1.8826
Exact 0.7023R2 1.8826 1.8826
0.05 15 0.7237 1.8379 1.9249
17 0.7239 1.8774 1.8860
19 0.7239 1.8757 1.8882
Exact 0.7190 1.8826 1.8826
0.1 15 0.7914 1.9064 1.8562
17 0.7916 1.8882 1.8752
19 0.7917 1.8823 1.8816
Exact 0.7711 1.8826 1.8826

#K and R represent the exact solutions based on Kirchhoff theory and Reissner theory, respectively.
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are still acceptable. It is believed that the solution is more or less affected by the partial implementation of the
simply-supported boundary conditions at the corner. It should be mentioned that there seems to be a sig-
nificant calculating error in the results of Timoshenko and Woinowsky-Krieger (1970), the theoretical results
therefore are obtained based on Eq. (37) rather than using the data provided in their book.

6. Concluding remarks

The newly proposed TDQM has been elaborated in the present study. Explicit expressions to calculate
the weighting coefficients were developed. The rapid convergence and satisfactory accuracy of the TDQM
has been demonstrated in the present work. In comparison with other available data on static flexural
analysis of triangular Reissner plate, good agreement has been reached with quite less grid points. It is
concluded that the TDQM is a promising numerical tool in dealing with multi-variable problems. It is
believed that the method will gain strong vitality when the domain decomposition technique is incorpo-
rated.
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